1,095 research outputs found

    虚拟参考站技术中对流层误差建模方法研究

    Get PDF
    Author name used in this publication: 黄丁发Author name used in this publication: 丁晓利, DING Xiao-liAuthor name used in this publication: 殷海涛Title in Traditional Chinese: 虛擬參考站技術中對流層誤差建模方法研究Journal title in Traditional Chinese: 測繪學報2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Spin filtering in transition-metal phthalocyanine molecules from first principles

    Get PDF

    Serial Examination of an Inducible and Reversible Dilated Cardiomyopathy in Individual Adult Drosophila

    Get PDF
    Recent work has demonstrated that Drosophila can be used as a model of dilated cardiomyopathy, defined as an enlarged cardiac chamber at end-diastole when the heart is fully relaxed and having an impaired systolic function when the heart is fully contracted. Gene mutations that cause cardiac dysfunction in adult Drosophila can result from abnormalities in cardiac development or alterations in post-developmental heart function. To clarify the contribution of transgene expression to post-developmental cardiac abnormalities, we applied strategies to examine the temporal and spacial effects of transgene expression on cardiac function. We engineered transgenic Drosophila based on the well-characterized temperature-sensitive Gal80 protein in the context of the bipartite Gal4/UAS transgenic expression system in Drosophila employing the cardiac specific driver, tinCΔ4-Gal4. Then, we developed a strategy using optical coherence tomography to serially measure cardiac function in the individual flies over time course of several days. As a proof of concept we examined the effects of the expression of a human mutant delta-sarcoglycan associated with familial heart failure and observed a reversible, post-developmental dilated cardiomyopathy in Drosophila. Our results show that the unique imaging strategy based on the non-destructive, non-invasive properties of optical coherence tomography can be applied to serially examine cardiac function in individual adult flies. Furthermore, the induction and reversal of cardiac transgene expression can be investigated in adult flies thereby providing insight into the post-developmental effects of transgene expression

    Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9(hi), SSEA-1(−) Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    Get PDF
    BACKGROUND: Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. METHODOLOGY/PRINCIPAL FINDINGS: We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r(2) = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi), SSEA-1(−) while ESCs are CD9(lo), SSEA-1(+). Isolation of CD9(hi), SSEA-1(−) cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2) = 0.95) and a propensity to differentiate into endothelial-like cells. CONCLUSIONS: By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs

    Brain Region–Specific Decrease in the Activity and Expression of Protein Kinase A in the Frontal Cortex of Regressive Autism

    Get PDF
    Autism is a severe neurodevelopmental disorder that is characterized by impaired language, communication, and social skills. In regressive autism, affected children first show signs of normal social and language development but eventually lose these skills and develop autistic behavior. Protein kinases are essential in G-protein-coupled, receptor-mediated signal transduction and are involved in neuronal functions, gene expression, memory, and cell differentiation. We studied the activity and expression of protein kinase A (PKA), a cyclic AMP–dependent protein kinase, in postmortem brain tissue samples from the frontal, temporal, parietal, and occipital cortices, and the cerebellum of individuals with regressive autism; autistic subjects without a clinical history of regression; and age-matched developmentally normal control subjects. The activity of PKA and the expression of PKA (C-α), a catalytic subunit of PKA, were significantly decreased in the frontal cortex of individuals with regressive autism compared to control subjects and individuals with non-regressive autism. Such changes were not observed in the cerebellum, or the cortices from the temporal, parietal, and occipital regions of the brain in subjects with regressive autism. In addition, there was no significant difference in PKA activity or expression of PKA (C-α) between non-regressive autism and control groups. These results suggest that regression in autism may be associated, in part, with decreased PKA-mediated phosphorylation of proteins and abnormalities in cellular signaling

    Measurement of the top quark mass using the matrix element technique in dilepton final states

    Get PDF
    We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7  fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84  GeV
    corecore